US009305279B1

a2 United States Patent 10) Patent No.: US 9,305,279 B1
Menzel (45) Date of Patent: Apr. 5, 2016
(54) RANKING SOURCE CODE DEVELOPERS 8,069,434 B2* 11/2011 Ploesserc.......... GOG6F 8/20
717/104
(71) Applicant: Semmle Limited, Oxford (GB) 8,141,040 B2* 3/2012 Chaar ..o G076 1F7§1/ (1)(1)
8,146,058 B2* 3/2012 Sarkarccco.. GOG6F 8/10
(72) Inventor: Galen Menzel, Oxford (GB) 717/101
8,180,766 B2 5/2012 Yang et al.
(73) Assignee: Semmle Limited, Oxford (GB) 8,296,719 B2* 10/2012 Chaaroooooevnn G06Q7(1)8;8(5)
. 8,386,994 B2* 2/2013 Subash GOG6F 8/10
(*) Notice: Subject to any disclaimer, the term of this 705/300
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 20 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 14/534,712
WO W02008016494 2/2008
(22) Filed: Now. 6, 2014 OTHER PUBLICATIONS
(51) Int.CL Cruz et al, “Towards Logistic Regression Models for Predicting
GO6F 9/44 (2006.01) Fault-prone Code across Software Projects”, IEEE, pp. 460-463,
G06Q 10/06 (2012.01) 2009.*
(52) US.CL (Continued)
CPC ..o, G06Q 10/06398 (2013.01)
(58) Field of Classification Search Primary Examiner — Anil Khatri
CPC ... GOGF 8/70; GOGF 8/77; G06Q 10/06398 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
USPC oo 717/101-109, 120-121
See application file for complete search history. 67 ABSTRACT
Methods, systems, and apparatus, including computer pro-
(56) References Cited grams encoded on computer storage media, for ranking
developers. One of the methods includes obtaining data rep-
U.S. PATENT DOCUMENTS resenting a plurality of developer actions for a developer,
6405364 B1* 62002 Bowman-Amuah .. G0GQ 10/06 tol‘i)talmng. alne;t Vlglatl?n baseline for the code bas;:, WI}er.eln
717/101 the net vIo ation baseline represepts a measure of vio at.lon
6,601,233 B1* 7/2003 Underwood GOGF 8/24 introductions compared to violation removals by a typical
717/100 high-productivity developer of the code base, obtaining a
6,715,130 BL* 3/2004 Eicheetal.cccoooune... 715/210 developer action baseline for the code base, the developer
;’ggg’% gé : ;; 588; f:llkdrew etal. ;};; } (1) f action baseline representing a number of developer actions
308, e i . 2 o)
7505952 BL* 32000 Engler o 706/47 for the typlcal high-productivity develgper ofthe code base. A
7.620,634 B2 11/2009 Ramsey net violation value and a developer action value are computed
7,810,067 B2* 10/2010 Kaelicke ..oovvvvenn... GOG6F 8/20 for the developer. A score is computed for developer includ-
717/102 ing comparing the sum of the net violation value and the net
7,890,924 B2 2/2011 Raffo ..o GOGF ; Z/7 5/(1)83 violation baseline to the sum of the developer action value and
7904.802 B1* 32011 Kolawaetal, .o 715/230 the developer action baseline. The developer is ranked rela-
7,958,494 B2* 6/2011 Chaarccccocev.... GOG6F 8/36 tive to other developers by the score.
717/101
7,975,257 B2* 7/2011 Fanningetal. 717/124 25 Claims, 5 Drawing Sheets

Ranking Engine

[Violation Status

Attributions
A
Ghum
245
= (T
Attribution Engine
§

Developer
Profiles

US 9,305,279 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,464,207 B2* 6/2013 Pouliotc.......... GO6F 8/71
717/101
8,615,741 B2* 12/2013 Hudsoncccccevn 717/125

8,781,915 B2 7/2014 Herbrich et al.
2002/0042793 Al 4/2002 Choi et al.
OTHER PUBLICATIONS
Yi et al, “A Synergistic Analysis Method for Explaining Failed
Regression Tests”, IEEE, pp. 257-267, 2015.*
Bird et al, “Don’t Touch My Code! Examining the Effects of Own-
ership on Software Quality”, ACM, pp. 4-14, 2011.*

Edwards et al, “AFID: An Automated Fault Identification Tool”,
ACM, pp. 179-188, 2008 .*

Hanazumi et al, “Generation of Java Programs Properties from Test
Purposes”, ACM, pp. 362-365, 2013.*

Rojas et al, “Automated Unit Test Generation during Software Devel-
opment: A Controlled Experiment and Think-Aloud Observations”,
ACM, pp. 338-349, 2015 .*

Norberg, R., “Credibility Theory”, Encyclopedia of Actuarial Sci-
ence, Sep. 15, 2006, 17 pp.

Helling, Rutger. “SuMDb-Summarizing a year in movies.”, Apr.
2012, 11 pp.

* cited by examiner

US 9,305,279 B1

Sheet 1 of 5

Apr. 5, 2016

U.S. Patent

L "Old
€0¢8¢00 #0S200°0 L€90T1 1) GG/ uesns| 9
¢S0£490°0 0T8¢00°0- 8¢t6¢C GeT (433 Juel S
095600°0- LYSLT0°0- [4°)742 8L St BUILl ¥
LL65V0°0 ¢09/10°0- 7 013 0S l'g €
00S490°0- 86V120°0- 00V 013 € uyor| ¢
00G¢¥0°0- €eLSe00- 0000t 000¢ 00¢ Aen| T
Al1suaq uoile|oIn 94026 (3) uany) jerol [(3) panoway | (u) paonpoJlul | dwepN | yuey

051 S

ori IA

thlq

QNFIA

Q:W

U.S. Patent Apr. 5,2016

200 1

Network

Request for
Developer Ranking
205

270

Sheet 2 of 5 US 9,305,279 B1

260

Developer
Ranking
255

Ranking Engine

210

Attributions
235,
Churn
245

Attribution Engine

5220

4

Violation Status
Changes
225

Violation Matching Engine ~_§" 230

A

Developer
Profiles

250

Static Analysis System

Code Snhapshots
215

Code Base

240

2

202

FIG. 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 5 US 9,305,279 B1

Receive request to rank developers 310

Y

Compute net violation baseline for

320
code base ~5

Y

Compute score for each developer ~. 330

Y

Generate ranking of developers by

340
score ~

Y

Provide ranking in response to the

350
request ~

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 5 US 9,305,279 B1

Obtain measures of violation
introductions, violation removals, and ~. 410
churn

4

Compute aggregate values for
violation introductions, violation 5420
removals, and churn

\

Compute aggregate net violation

430
value ~

4

Compute aggregate action value ~_5~ 440

Y

Compute aggregate net violation

. 450
ratio ~

Compute net violation baseline ~_ 460

FIG. 4

U.S. Patent Apr. 5, 2016 Sheet 5 of 5 US 9,305,279 B1

Obtain measures of violation
introductions, violation removals, and ~. 570
churn attributed to the developer

Y

Compute net violation value for the

520
developer ~

Y

Compute developer action value ~_ 530

Y
Compute score for developer using
the net violation value, the developer

action value, the net violation ~J 540
baseline, and the developer action
baseline

FIG. 5

US 9,305,279 B1

1
RANKING SOURCE CODE DEVELOPERS

BACKGROUND

This specification relates to static analysis of computer
software source code.

Static analysis refers to techniques for analyzing computer
software source code without executing the source code as a
computer software program.

Source code is typically maintained by developers in a
code base of source code using a version control system.
Version control systems generally maintain multiple revi-
sions of the source code in the code base, each revision being
referred to as a snapshot. Each snapshot includes the source
code of files of the code base as the files existed at a particular
point in time.

Relationships among snapshots stored in a version control
system can be represented as a directed, acyclic revision
graph. Each node in the revision graph represents a commit of
some portion of the source code of the code base. Each
commit identifies source code of a particular snapshot as well
as other pertinent information about the snapshot, such as the
author of the snapshot and data about ancestors of the commit
in the revision graph. A directed edge from a first node to a
second node in the revision graph indicates that a commit
represented by the first node occurred before a commit rep-
resented by the second node, and that no intervening commits
exist in the version control system.

A static analysis system can compile source code of a
particular snapshot of the code base to identify characteristic
segments of source code in the snapshot. For example, a static
analysis system can identify violations in the source code of
a particular set of coding standards. A static analysis system
can also identify a responsible contributor for each character-
istic segment of source code and attribute the characteristic
segment to the responsible contributor, e.g., to a particular
developer or group of developers.

A static analysis system can rank developers according to
violation counts. For example, the system can keep track of
how many violations each developer introduces into the code
base and how many violations each developer removes from
the code base.

Violation counts are influenced significantly by the number
of'lines of code added, deleted, or changed, also referred to as
the churn or the number of lines of churn, by each particular
developer. Thus, a developer with high churn is likely to have
removed more violations than a developer who is new to the
team.

A static analysis system can also rank developers accord-
ing to a violation density score. The violation density score is
generally computed as a net of violation introductions n and
violation removals fattributed to the developer, divided by the
churn c attributed to the developer. Thus, the violation density
score d can be computed according to:

Violation density scores are also influenced significantly
by the number of lines of churn a particular developer has
contributed. For example, a developer who has 10 net viola-
tions in 100 lines of churn may have a relatively high violation
density. However, this score may not be a meaningful indica-
tor of the developer’s effectiveness until more data estab-

10

15

20

25

30

35

40

45

50

55

60

65

2

lishes that the violations are an ongoing pattern rather than an
aberration due to the low churn or due to a problematic
segment of source code.

SUMMARY

This specification describes how a static analysis system
can rank contributors of source code to a code base according
to a score that represents the effectiveness of the contributor
relative to other contributors of source code to the code base
and that is not overly influenced by their relative numbers of
lines of churn.

In general, one innovative aspect of the subject matter
described in this specification can be embodied in methods
that include the actions of obtaining data representing a plu-
rality of developer actions for a developer, wherein each
developer action is classified as being either a violation intro-
duction attributed to the developer, a violation removal attrib-
uted to the developer, or a unit of churn attributed to the
developer; obtaining a net violation baseline for the code
base, wherein the net violation baseline represents a measure
of'violation introductions compared to violation removals by
a typical high-productivity developer of the code base;
obtaining a developer action baseline for the code base, the
developer action baseline representing a number of developer
actions for the typical high-productivity developer of the code
base; computing a net violation value for the developer, the
net violation value representing a measure of violation intro-
ductions attributed to the developer compared to violation
removals attributed to the developer; computing a developer
action value for the developer, the developer action value
representing a total number of developer actions of the devel-
oper; computing a score including comparing the sum of the
net violation value and the net violation baseline to the sum of
the developer action value and the developer action baseline;
and ranking the developer relative to one or more other devel-
opers according to the computed score. Other embodiments
of'this aspect include corresponding computer systems, appa-
ratus, and computer programs recorded on one or more com-
puter storage devices, each configured to perform the actions
of'the methods. For a system of one or more computers to be
configured to perform particular operations or actions means
that the system has installed on it software, firmware, hard-
ware, or a combination of them that in operation cause the
system to perform the operations or actions. For one or more
computer programs to be configured to perform particular
operations or actions means that the one or more programs
include instructions that, when executed by data processing
apparatus, cause the apparatus to perform the operations or
actions.

The foregoing and other embodiments can each optionally
include one or more of the following features, alone or in
combination. The score represents the expected long term
effect on the code base of violation introductions and viola-
tion removals attributed to the developer. The number of
developer actions is a predetermined constant number of
developer actions. A particular fractile of the developers have
a number of attributed actions that is less than the developer
action baseline. The score S is given by:

n—f+B
Tn+fHc+m’

wherein n is a count of violations introductions attributed to
the developer, fis a count of violation removals attributed to

US 9,305,279 B1

3

the developer, B is the net violation baseline, ¢ is the churn
attributed to the developer, and m is the developer action
baseline. The actions include determining that the developer
has arank that satisfies a threshold relative to other developers
in a team of developers; and generating a notification to a
team leader of the team of developers. The actions include
determining that the developer has a low rank relative to other
developers in a team of developers; and providing a sugges-
tion that the developer be paired with another developer hav-
ing a high rank. The actions include determining that the
developer has a high rank relative to other developers in a
team of developers; and providing a suggestion that the devel-
oper be paired with another developer having a low rank.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages. Ranking developers
according to the techniques described below does not result in
a ranking that is dominated by developers with high churn or
developers with low churn. The score is also useful for rank-
ing because it represents a measure of effectiveness of the
particular developer relative to other developers on the team
or in the organization. The ranking allows an organization to
immediately identify contributors having a high number of
problematic contributions to a code base, which can allow
individually tailored training Ranking developers can result
in gamification of a project, which results in developers who
are more engaged and perform at a higher level. Ranking
developers can help identify contributors having a consis-
tently low number of problematic contributions or a high
number of good contributions, and these developers can be
rewarded. Developers with high and low numbers of contri-
butions can be paired together for team programming and
training purposes.

The details of one or more embodiments of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example ranking of developers.

FIG. 2 is a diagram of an example system.

FIG. 3 is a flow chart of an example process for generating
a ranking of developers.

FIG. 4 is a flow chart of an example process for computing
a net violation baseline.

FIG. 5 is a flow chart of an example process for computing
a score for a particular developer.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

A static analysis system can compute a score for a particu-
lar source code contributor, which may be an individual
developer or a group of developers. The score represents a
measure of effectiveness of the contributor. Thus, the score
represents a measure of the tendency of the contributor to
make net positive or negative contributions to the source
code. In this specification, where reference is made to com-
puting a score for a developer, the same techniques can also be
applied to any appropriate contributor of source code to a
code base, e.g., a team of developers in an organization or a
selected group of developers.

The system can compute the score according to how many
developer actions are classified by the system as being posi-

20

40

45

55

65

4

tive, negative, or neutral contributions by the developer to the
code base, relative to actions classified as positive, negative,
and neutral contributions by all developers to the code base.

In the systems described below, the positive and negative
contributions of developers are measured as a number of
violations introductions or violation removals attributed to
the developer or a group of developers. In general, a source
code violation is a segment of source code that includes a
violation of a particular coding standard. Violations of coding
standards can be represented by data elements, and will also
be referred to simply as violations when the meaning is clear
from context. However, a static analysis system can use the
same techniques described below to compute a measure of
developer effectiveness using any measure of positive and
negative contributions to the code base. For example, a sys-
tem can use, as a measure of contributions to a code base, a
count of bugs removed, issues resolved, or compiling or link-
ing errors introduced or removed by developers, to name just
a few examples.

Each positive, negative, and neutral contribution by a
developer can be considered one developer action. Thus,
some developer actions may overlap. For example, a devel-
oper committing one line of source code that introduces one
violation can be considered to have contributed two developer
actions, one negative and one neutral. Similarly, a developer
committing a change to one line of source code that intro-
duces one violation and removes another violation can be
considered to have contributed three developer actions, one
positive—the removal of the violation, one negative—the
introduction of the other violation, and one neutral—the con-
tribution of the change to the line of source code.

FIG. 1 illustrates an example ranking of developers. Each
developer has an associated number of violations introduc-
tions 110, violation removals 120, and churn 130 attributed to
the developer. Each unit of churn 130 represents a line of code
added, changed, or deleted in snapshots of the code base
attributed to each developer. The units of churn 130 may also
represent a number of files modified, commits, or any com-
bination of these.

The developers are ranked by the effectiveness score 140,
which can represent the expected net violations to be intro-
duced by the developer per developer action while taking into
account the performance of a typical high-productivity devel-
oper of the code base. The effectiveness score 140 can be used
as a measure of the effectiveness of the developer relative to
other developers in the code base. In this example ranking, a
lower score represents a more effective developer. A system
can compute the score 140 such that it is not overly sensitive
to the relative number of lines of churn contributed by each
developer.

The effectiveness score 140 may represent how developers
compare to a typical, high-productivity developer of the code
base. A system may start off each developer with a default
score that is equal to the score of the typical, high-productiv-
ity developer. Then, as more evidence accumulates for each
developer, their individual effectiveness scores will deviate
from that of the typical, high-productivity developer. The
computation of the score 140 will be described in more detail
below with reference to FIG. 5.

In contrast to the effectiveness score 140, a simple viola-
tion density score 150 is highly sensitive to the number of
lines of churn contributed by each individual developer. For
example, John has a better violation density than Mary. How-
ever, this difference may not be significant when taking into
account the fact that that Mary has contributed 100 times as
many lines of churn to the code base as John.

US 9,305,279 B1

5

Thus, although John may eventually prove to be a more
effective source code developer than Mary, so far his contri-
butions are not significant enough for that to be reflected by
the score 140.

As another example, Bill has actually introduced more
violations than he has removed, while Tina has removed more
violations than she has introduced. However, because Bill’s
total contribution thus far is relatively small compared to that
of Tina, Bill’s score is still close to the default score and is
thus ranked above Tina. Although Tina has removed viola-
tions, she has removed fewer than the typical, high-produc-
tivity developer. Furthermore, the number of Tina’s developer
actions is large enough to establish a pattern in her perfor-
mance. Thus, she is ranked below Bill according to the effec-
tiveness score 140.

FIG. 2 is a diagram of an example system 200. The system
200 includes a user device 260 in communication with a static
analysis system 202 over a network 270. The static analysis
system 202 includes several components, including a ranking
engine 210, an attribution engine 220, and a violation match-
ing engine 230. The components of the static analysis system
202 can be implemented as computer programs installed on
one or more computers in one or more locations that are
coupled to each through a network.

A user of user device 260 can use the static analysis system
202 to obtain rankings of developers of a code base 240. A
user can submit a request for developer rankings 205 to the
static analysis system 202 over the network 270, which can be
any appropriate data communications network, e.g., one that
includes an intranet or the Internet.

The request can include a code base identifier of the code
base 240 for analysis and one or more requested parameters.
For example, the request for a developer ranking can specify
a particular time period over which to rank developers, can
specify identifiers of a subset of developers, or can specify a
particular group or team of developers.

Before or after the request for a developer ranking 205 is
received, the static analysis system 202 can use a violation
matching engine 230 to identify source code violations that
occur in each code snapshot 215 of the code base 240. The
violation matching engine 230 can also determine which of
the violations are matching violations between adjacent snap-
shots in a revision graph of the code base. Non-matching
violations between snapshots in the revision graph represent
violation status changes 225, which are either violations
newly introduced into the code base by a particular snapshot,
or violations newly removed from the code base by a particu-
lar snapshot.

The attribution engine 220 receives the violation status
changes 225 from the violation matching engine 230. The
attribution engine 220 then determines a responsible entity
for each of the violation status changes 225, which can be an
individual developer, a team of developers within an organi-
zation, or another group of developers.

Example processes for matching violations and attributing
violation status changes are described in commonly owned
U.S. Patent Application No. 61/983,932, for “Source Code
Violation Matching and Attribution,” to Henriksen et al.,
which is incorporated here by reference. Alternatively, the
violation status changes 225 and corresponding attributions
235 can be obtained from other sources rather than being
computed by the static analysis system 202.

The attribution engine 220 can store the attributions 235 in
a collection of developer profiles 250 that stores information
about each developer that has contributed to the code base
240. For example, the attribution engine 220 can store, for
each developer in the developer profiles 250, data represent-

15

20

30

40

45

50

6

ing violation introductions attributed to the developer, viola-
tion removals attributed to the developer, and the lines of
churn attributed to the developer.

The ranking engine 210 receives data representing the attri-
butions 235 and data representing churn 245 for each particu-
lar developer. The attributions 235 and churn 245 can be
received from either the attribution engine 220 or from the
developer profiles 250.

The ranking engine 210 computes a score for each devel-
oper and generates a developer ranking 255 according to the
score for each developer. The ranking engine 210 can then
provide the developer ranking 255 back to the user device 260
in response to the request. For example, the ranking engine
210 can generate a graphical presentation of the developer
ranking 255 and provide the presentation back to the user
device 260 in an appropriate format, e.g., as a hypertext
markup language (HTML) or Extensible Markup Language
(XML) document for display be a web browser, for example.
Some implementations include an application for the user
device 260 that implements a user interface and can display,
in a text or graphical form, data received from the ranking
engine 210. For user devices that are smart phones, the appli-
cation can be what is referred to as an “app.”

FIG. 3 is a flow chart of an example process for generating
aranking of developers. A static analysis system can generate
a ranking of developers that represents a measure of effec-
tiveness of the developer and provide the ranking in response
to a request for developer rankings. The example process can
be implemented by one or more computer programs installed
on one or more computers. The process will be described as
being performed by an appropriately programmed system of
one or more computers, e.g., the ranking engine 210 of FIG.
2.

The system receives a request to rank developers (310).
The request can be submitted to the system by a user who
desires to gain insight into the relative effectiveness of devel-
opers who have contributed source code to the code base.

The request can specify an identifier of a particular code
base, or a particular project, or a particular directory within a
code base. The system can then generate a ranking ofall or a
subset of developers that contributed changes to the particular
requested portion of the code base. The request can also
specify a particular subset of developers to be ranked.

The request can also specify the start and end points of a
particular time period over which the developers should be
ranked, for example, the calendar year for 2012. The request
can also request a ranking over a most recent time period, e.g.,
over the past week, month, year, or all time.

The system computes a net violation baseline for the code
base (320). In order to measure the effectiveness of each
developer relative to other developers that contributed source
code to the code base, the system can compute a net violation
baseline. The net violation baseline represents the expected
net violations of a typical, high-productivity developer of the
code base. Generally, productivity is measured by the amount
of developer actions contributed. Alternatively, the system
can measure productivity by the amount of churn.

The system can compute a value for the net violation base-
line using actual violations introductions and removals com-
mitted by developers of the code base. In other words, the
system can define the performance of a typical, high-produc-
tivity developer by the performance of actual contributors to
the code base. Alternatively, the system can select a particular
value as the net violation baseline.

For example, the system can compute the net violation
baseline by computing the difference between a count of
violation introductions and a count of violation removals over

US 9,305,279 B1

7

a corresponding count of developer actions for all violation
introductions, violation removals, and churn attributed to the
developers and scaling the result by a particular number m of
developer actions that are representative of the contributions
of a typical, high-productivity developer. In other words, the
system defines a typical, high-productivity developer to be a
developer who has contributed m developer actions while
maintaining a net violation ratio equal to that of all developers
in the code base.

The net violation baseline can be positive or negative. If
positive, the typical, high-productivity developer contributes
more violation introductions than violation removals. This
can indicate that the developers of the code base routinely
introduce more violations than they remove. If the net viola-
tion baseline is negative, the typical, high-productivity devel-
oper contributes more violation removals than violation intro-
ductions. This can indicate that the developers of the code
base routinely remove more violations than they introduce.
Computing the net violation baseline will be described in
more detail below with reference to FIG. 4.

The system computes a score for each developer (330). In
general, the score for the developer represents the expected
violation introductions per developer action for a given devel-
oper, after taking into account the performance of the typical,
high-productivity developer. Computing a score for a devel-
oper will be described in more detail below with reference to
FIG. 5.

The system generates a ranking of developers by score
(340). In general, the system sorts the developers by the
computed score. When the net of violations is computed as
violation introductions minus violation removals, scores hav-
ing smaller values represent more eftective developers. How-
ever, the net of violations may also be computed as violation
removals minus violation introductions, in which case scores
having larger values represent more effective developers.

The system provides the ranking in response to the request
(350). For example, the system can generate a graphical pre-
sentation of the ranking, e.g., in a web page presentation, and
provide the presentation to a user device for display to the user
that initiated the request.

The system can also use the score in a variety of other ways,
including for rewarding effective developers and targeting
developer training. For example, the system can recognize
high-ranking developers, for example, by sending an auto-
matic email notification to the team to congratulate the high-
ranking developers.

The system can consider developers to have a high ranking
or low ranking if the developer has a rank that satisfies a
particular threshold. For example, the system can consider a
developer to have a high ranking if the developer is within the
top-ranked 5, 10, or 20 developers on the team. Similarly, the
system can consider a developer to have a low ranking if the
developer is within the bottom-ranked 5, 10, or 20 developers
on the team.

The system can also generate an email notification that is
communicated to developers having a low rank as an encour-
agement to review coding standards on source code viola-
tions. The system may also generate an email notification that
is communicated to a team leader or group manager of a
developer having a low rank, which can enable the leader or
manager to help the developer improve. The system may also
determine the types of violations that are most commonly
introduced by a particular developer and inform the developer
of'these types of violations. Because the score is not sensitive
to relative amounts of churn like other methods of ranking
developers, the system can avoid sending spurious notifica-

10

15

20

25

30

35

40

45

50

55

60

65

8

tions or email messages that are due to abnormal performance
numbers due to relatively low levels of churn.

The system can also automatically suggest that a first
developer having a low rank be paired with a second devel-
oper having a higher rank. The system may also automatically
suggest that the second developer act as a code reviewer for
the first developer. Both of these measures can help reduce the
number of violation introductions attributed the first devel-
oper and can likewise help increase the number of violation
removals that are attributed to the first developer. This in turn
decreases the number of violations in the code base.

FIG. 4 is a flow chart of an example process for computing
anet violation baseline. As mentioned above, the net violation
baseline represents the expected net violations of a typical,
high-productivity developer of the code base. The example
process can be implemented by one or more computer pro-
grams installed on one or more computers. The process will
be described as being performed by an appropriately pro-
grammed system of one or more computers, e.g., the ranking
engine 210 of FIG. 2.

The system obtains measures of violation introductions,
violation removals, and churn attributed to developers who
are relevant to the net violation baseline (410). The system
can consider different groups of developers to be relevant to
the computing the net violation baseline. For example, the
system can consider all developers who have contributed
code to the code base for all time to be relevant developers for
computing the net violation baseline.

In some implementations, the system considers a time
period specified by a request for a developer ranking. Then,
the system can obtain the data for particular developers for the
relevant time period.

For example, for each developer relevant to the request, the
system can access a developer profile to obtain counts of
violation introductions, violation removals, and churn attrib-
uted to each developer. The churn can represent a count of the
number of lines of code added, changed, and deleted, or some
sub-combination of these.

In some implementations, when computing developer
scores, the system can use transformed values rather than raw
counts of violation introductions, violation removals, and
churn. For example, the system can transform the raw counts
by normalizing or scaling the counts and using the trans-
formed values rather than the raw counts of the violation
introductions, violation removals, and churn. The system
may also give more weight to some actions than others. For
example, very serious violations that tend to frequently result
in run-time errors can be assigned more weight than other
violations that are less serious.

The system computes aggregate values for violation intro-
ductions, violation removals, and churn (420). For example,
after obtaining the counts for all relevant developers, the
system can sum the counts to compute an aggregate violation
introduction count N, an aggregate violation removal count F,
and an aggregate churn C.

The system computes an aggregate net violation value
(430). The aggregate net violation value measures the differ-
ence between violation introductions and violation removals
for all developers relevant to the request. For example, the
system can compute an aggregate violation introduction
count N and an aggregate violation removal count F. The
system can then compute an aggregate net violation value as
N-F.

The system computes an aggregate action value (440). The
aggregate action value represents a measure of the number of
developer actions by developers of the code base. For
example, the system can compute the aggregate action value

US 9,305,279 B1

9

as the sum of the aggregate violation introduction count N, the
aggregate violation removal count F, and the aggregate
churn C.

Although each violation introduction and each violation
removal is also counted in the aggregate churn C, the system
can still use both the aggregate violation introduction count N
and the aggregate violation removal count F when computing
the aggregate action value because there is not necessarily a
one-to-one relationship between violation introductions or
removals and churn. In fact, multiple violations can be intro-
duced or removed in a single line of churn. In other words, a
single line of churn can introduce and remove zero, one, or
more violations.

The system computes an aggregate net violation ratio
(450). The aggregate net violation ratio compares the aggre-
gate net violation value to the aggregate action value. In some
implementations, the aggregate net violation ratio R is the
aggregate net violation value divided by the aggregate action
value. When these values are counts, the aggregate net viola-
tion ratio can be given by:

N-F

R=————.
N+F+C

The system computes the net violation baseline (460). In
some implementations, the system computes the net violation
baseline B as the aggregate net violation ratio R multiplied by
a developer action baseline m. The net violation baseline B
can thus be given as Rxm.

The developer action baseline m is a constant that can be
selected by an administrator of the system or administrative
owner of the ranking engine. The developer action baseline
represents a number of developer actions for a typical, high-
productivity developer. By multiplying the net violation ratio
by the developer action baseline, the system obtains the
expected net violations of the typical, high-productivity
developer of the code base.

Selecting different values for m changes the expected
behavior of the typical, high-productivity developer. Select-
ing mto be a larger number of developer actions indicates that
the net violation baseline is more representative of the
expected performance of the developers of the code base, and
selecting m to be a smaller number of developer actions
indicates that the net violation baseline is less representative
of the expected performance of the developers of the code
base.

The magnitude of the developer action baseline influences
the effectiveness score computed for the individual developer.
In some implementations, the developer action baseline is
chosen so that a particular fractile of the developers have a
number of actions that is below the chosen baseline. The
fractile can apply to any appropriate subset of developers,
e.g., all or a subset of developers involved in a project or only
developers relevant to the request.

If the developer action baseline is chosen for the fractile
0.9, the developer action baseline is a number of developer
actions greater than the number of actions by 90% of devel-
opers. If the developer action baseline is chosen for the frac-
tile 0.1, the developer action baseline is a number of devel-
oper actions greater than the number of actions by 10% of
developers. If the developer action baseline is 0.5, the devel-
oper action baseline represents a median of developer actions.

As an example, if for every 90 lines of churn, developers
introduce six violations and remove four, the aggregate net
violation ratio R would be two net violations over 100 devel-

25

35

40

45

50

55

60

65

10

oper actions, or 2/100=0.02. And if the developer action base-
line m is chosen to be 20,000 developer actions, the number of
violations of the net violation baseline B would be:

B=Rxm=0.02x20,000=400.

While the system can compute a separate score for each
developer, the system can compute the net violation baseline
once. In some implementations, the system stores the net
violation baseline and recomputes the net violation baseline
only periodically.

FIG. 5 is a flow chart of an example process for computing
a score for a particular developer. A system can compute a
score for a developer that represents a measure of effective-
ness of the developer relative to the effectiveness of all other
developers. The example process can be implemented by one
or more computer programs installed on one or more com-
puters. The process will be described as being performed by
an appropriately programmed system of one or more com-
puters, e.g., the ranking engine 210 of FIG. 2.

The system obtains measures of violations introductions,
violation removals, and churn attributed to the developer
(510). The system can obtain the measures from a stored
developer profile for the particular developer. The system can
also obtain measures that correspond to a particular time
constraint specified by the request, e.g., violation introduc-
tions, removals, and churn that from the past week, month,
year, or all time. The system can also obtain measures of
violation introductions, violation removals, and churn attrib-
uted to the developer corresponding to work performed for a
particular project or a particular subteam of developers.

The system computes a net violation value for the devel-
oper (520). The net violation value measures the difference
between the count of violation introductions and violation
removals attributed to the developer. For example, the system
can compute a count of violation introductions n and a count
of'violation removals fattributed to the developer. The system
can then compute a net violation value for the developer as
n-f. The system may also first scale, weight, or normalize the
counts of violation introductions and violation removals, as
described above with reference to FIG. 4.

The system computes a developer action value (530). The
developer action value represents an aggregate value for
actions by a source code developer. For example, the system
can compute the developer action value as a sum of counts of
violation introductions attributed to the developer, violations
removals attributed to the developer, and churn attributed to
the developer, or n+f+c. The system can also scale, weight, or
normalize the counts when computing the developer action
value, as described above with reference to FIG. 4.

The system computes a score for the developer using the
net violation value, the developer action value, the net viola-
tion baseline, and the developer action baseline (540). Thus,
the score S for the developer can be given by:

n—f+B
Tn+fHc+m’

where B is the net violation baseline, and m is the developer
action baseline as described above with reference to FIG. 4.
The score may represent the expected long-term effect of
the developer’s contributions on the code base.
If, as shown in FIG. 1, Mary’s score is —0.035733, for every
developer action Mary performs, she is expected to remove
0.035733 violations from the code base. On the other hand,

US 9,305,279 B1

11

because Susan’s score is positive, for every developer action
Susan performs, she is expected to introduce 0.002504 vio-
lations into the code base.

In some implementations, the system can simplify the
computation of the developer action value or the aggregate
action value by using only the churn for each. In other words,
the system can use the churn for a particular developer as the
developer action value or use the churn for all developers as
the aggregate action value or both.

Embodiments of the subject matter and the functional
operations described in this specification can be implemented
in digital electronic circuitry, in tangibly-embodied computer
software or firmware, in computer hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specifi-
cation can be implemented as one or more computer pro-
grams, i.e., one or more modules of computer program
instructions encoded on a tangible nontransitory program
carrier for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. The computer
storage medium can be a machine-readable storage device, a
machine-readable storage substrate, a random or serial access
memory device, or a combination of one or more of them. The
computer storage medium is not, however, a propagated sig-
nal.

The term “data processing apparatus”™ encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, or multiple processors or computers. The
apparatus can include special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (applica-
tion-specific integrated circuit). The apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of one or more of them.

A computer program (which may also be referred to or
described as a program, software, a software application, a
module, a software module, a script, or code) can be written
in any form of programming language, including compiled or
interpreted languages, or declarative or procedural lan-
guages, and it can be deployed in any form, including as a
standalone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a
file system. A program can be stored in a portion of a file that
holds other programs or data, e.g., one or more scripts stored
in a markup language document, in a single file dedicated to
the program in question, or in multiple coordinated files, e.g.,
files that store one or more modules, subprograms, or portions
of'code. A computer program can be deployed to be executed
on one computer or on multiple computers that are located at
one site or distributed across multiple sites and intercon-
nected by a communication network.

As used in this specification, an “engine,” or “software
engine,” refers to a software implemented input/output sys-
tem that provides an output that is different from the input. An
engine can be an encoded block of functionality, such as a
library, a platform, a software development kit (“SDK”), or an
object. Each engine can be implemented on any appropriate

10

15

20

25

30

35

40

45

50

55

60

65

12

type of computing device, e.g., servers, mobile phones, tablet
computers, notebook computers, music players, e-book read-
ers, laptop or desktop computers, PDAs, smart phones, or
other stationary or portable devices, that includes one or more
processors and computer readable media. Additionally, two
or more of the engines may be implemented on the same
computing device, or on different computing devices.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable com-
puters executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit).

Computers suitable for the execution of a computer pro-
gram include, by way of example, can be based on general or
special purpose microprocessors or both, or any other kind of
central processing unit. Generally, a central processing unit
will receive instructions and data from a read-only memory or
arandom access memory or both. The essential elements of a
computer are a central processing unit for performing or
executing instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., amobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Posi-
tioning System (GPS) receiver, or a portable storage device,
e.g., a universal serial bus (USB) flash drive, to name just a
few.

Computer-readable media suitable for storing computer
program instructions and data include all forms of nonvolatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g.,, EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto-optical
disks; and CDROM and DVD-ROM disks. The processor and
the memory can be supplemented by, or incorporated in,
special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) monitor, an LCD (liquid crystal display)
monitor, or an OLED display, for displaying information to
the user, as well as input devices for providing input to the
computer, e.g., a keyboard, a mouse, or a presence sensitive
display or other surface. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending resources to and
receiving resources from a device that is used by the user; for
example, by sending web pages to a web browser on a user’s
client device in response to requests received from the web
browser.

Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a backend component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a frontend component, e.g., a client computer
having a graphical user interface or a Web browser through

US 9,305,279 B1

13

which a user can interact with an implementation of the
subject matter described in this specification, or any combi-
nation of one or more such backend, middleware, or frontend
components. The components of the system can be intercon-
nected by any form or medium of digital data communication,
e.g., acommunication network. Examples of communication
networks include a local area network (“LLAN”) and a wide
area network (“WAN™), e.g., the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any invention or of what may be claimed, but
rather as descriptions of features that may be specific to
particular embodiments of particular inventions. Certain fea-

tures that are described in this specification in the context of

separate embodiments can also be implemented in combina-
tionin a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system modules
and components in the embodiments described above should
not be understood as requiring such separation in all embodi-
ments, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft-
ware products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the par-
ticular order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous.

What is claimed is:

1. A computer-implemented method comprising:

obtaining data representing a plurality of developer actions
for a developer, wherein each developer action is clas-
sified as being either a violation introduction attributed
to the developer, a violation removal attributed to the
developer, or a unit of churn attributed to the developer;

obtaining a net violation baseline for a code base, wherein
the net violation baseline represents a measure of viola-
tion introductions compared to violation removals by a
typical high-productivity developer of the code base;

obtaining a developer action baseline for the code base, the
developer action baseline being a predetermined con-

10

15

25

30

35

40

45

50

55

60

65

14

stant number of developer actions representing a number
of developer actions for the typical high-productivity
developer of the code base;
computing a net violation value for the developer from the
data, the net violation value representing a measure of
violation introductions attributed to the developer com-
pared to violation removals attributed to the developer;

computing a developer action value for the developer from
the data, the developer action value representing a total
number of developer actions of the developer;

computing a score including comparing the sum of the net
violation value and the net violation baseline to the sum
of the developer action value and the developer action
baseline; and

ranking the developer relative to one or more other devel-

opers according to the computed score.

2. The method of claim 1, wherein the score represents the
expected long term effect on the code base of violation intro-
ductions and violation removals attributed to the developer.

3. The method of claim 1, wherein a particular fractile of
the developers have a number of attributed actions that is less
than the developer action baseline.

4. The method of claim 1, wherein the score S is given by:

n—f+B
T h+fHc+m’

wherein n is a count of violations introductions attributed
to the developer, fis a count of violation removals attrib-
uted to the developer, B is the net violation baseline, ¢ is
the churn attributed to the developer, and m is the devel-
oper action baseline.

5. The method of claim 1, further comprising:

determining that the developer has a rank that satisfies a
threshold relative to other developers in a team of devel-
opers; and

generating a notification to a team leader of the team of
developers.

6. The method of claim 1, further comprising:

determining that the developer has a low rank relative to
other developers in a team of developers; and

providing a suggestion that the developer be paired with
another developer having a high rank.

7. The method of claim 1, further comprising:

determining that the developer has a high rank relative to
other developers in a team of developers; and

providing a suggestion that the developer be paired with
another developer having a low rank.

8. The method of claim 1, further comprising:

generating a graphical presentation of the ranking of the
developer relative to the one or more other developers;
and

providing the graphical presentation to a user device.

9. A system comprising:

one or more computers and one or more storage devices
storing instructions that are operable, when executed by
the one or more computers, to cause the one or more
computers to perform operations comprising:

obtaining data representing a plurality of developer actions
for a developer, wherein each developer action is clas-
sified as being either a violation introduction attributed
to the developer, a violation removal attributed to the
developer, or a unit of churn attributed to the developer;

obtaining a net violation baseline for a code base, wherein
the net violation baseline represents a measure of viola-

US 9,305,279 B1

15

tion introductions compared to violation removals by a
typical high-productivity developer of the code base;
obtaining a developer action baseline for the code base, the
developer action baseline being a predetermined con-
stant number of developer actions representing a number
of developer actions for the typical high-productivity
developer of the code base;
computing a net violation value for the developer from the
data, the net violation value representing a measure of
violation introductions attributed to the developer com-
pared to violation removals attributed to the developer;

computing a developer action value for the developer from
the data, the developer action value representing a total
number of developer actions of the developer;

computing a score including comparing the sum of the net
violation value and the net violation baseline to the sum
of the developer action value and the developer action
baseline; and

ranking the developer relative to one or more other devel-

opers according to the computed score.

10. The system of claim 9, wherein the score represents the
expected long term effect on the code base of violation intro-
ductions and violation removals attributed to the developer.

11. The system of claim 9, wherein a particular fractile of
the developers have a number of attributed actions that is less
than the developer action baseline.

12. The system of claim 9, wherein the score S is given by:

n—f+B
T h+fHc+m’

wherein n is a count of violations introductions attributed
to the developer, f'is a count of violation removals attrib-
uted to the developer, B is the net violation baseline, ¢ is
the churn attributed to the developer, and m is the devel-
oper action baseline.

13. The system of claim 9, wherein the operations further
comprise:

determining that the developer has a rank that satisfies a

threshold relative to other developers in a team of devel-
opers; and

generating a notification to a team leader of the team of

developers.

14. The system of claim 9, wherein the operations further
comprise:

determining that the developer has a low rank relative to

other developers in a team of developers; and
providing a suggestion that the developer be paired with
another developer having a high rank.

15. The system of claim 9, wherein the operations further
comprise:

determining that the developer has a high rank relative to

other developers in a team of developers; and
providing a suggestion that the developer be paired with
another developer having a low rank.

16. The system of claim 9, wherein the operations further
comprise:

generating a graphical presentation of the ranking of the

developer relative to the one or more other developers;
and

providing the graphical presentation to a user device.

17. A computer program product, encoded on one or more
non-transitory computer storage media, comprising instruc-
tions that when executed by one or more computers cause the
one or more computers to perform operations comprising:

15

20

35

40

45

50

60

65

16

obtaining data representing a plurality of developer actions
for a developer, wherein each developer action is clas-
sified as being either a violation introduction attributed
to the developer, a violation removal attributed to the
developer, or a unit of churn attributed to the developer;

obtaining a net violation baseline for a code base, wherein
the net violation baseline represents a measure of viola-
tion introductions compared to violation removals by a
typical high-productivity developer of the code base;

obtaining a developer action baseline for the code base, the
developer action baseline being a predetermined con-
stant number of developer actions representing a number
of developer actions for the typical high-productivity
developer of the code base;
computing a net violation value for the developer from the
data, the net violation value representing a measure of
violation introductions attributed to the developer com-
pared to violation removals attributed to the developer;

computing a developer action value for the developer from
the data, the developer action value representing a total
number of developer actions of the developer;

computing a score including comparing the sum of the net
violation value and the net violation baseline to the sum
of the developer action value and the developer action
baseline; and

ranking the developer relative to one or more other devel-

opers according to the computed score.

18. The computer program product of claim 17, wherein
the score represents the expected long term effect on the code
base of violation introductions and violation removals attrib-
uted to the developer.

19. The computer program product of claim 17, wherein a
particular fractile of the developers have a number of attrib-
uted actions that is less than the developer action baseline.

20. The computer program product of claim 17, wherein
the score S is given by:

n—f+B
T h+fHc+m’

wherein n is a count of violations introductions attributed
to the developer, fis a count of violation removals attrib-
uted to the developer, B is the net violation baseline, ¢ is
the churn attributed to the developer, and m is the devel-
oper action baseline.
21. The computer program product of claim 17, wherein
the operations further comprise:
determining that the developer has a rank that satisfies a
threshold relative to other developers in a team of devel-
opers; and
generating a notification to a team leader of the team of
developers.
22. The computer program product of claim 17, wherein
the operations further comprise:
determining that the developer has a low rank relative to
other developers in a team of developers; and
providing a suggestion that the developer be paired with
another developer having a high rank.
23. The computer program product of claim 17, wherein
the operations further comprise:
determining that the developer has a high rank relative to
other developers in a team of developers; and
providing a suggestion that the developer be paired with
another developer having a low rank.

US 9,305,279 B1

17

24. The computer program product of claim 17, wherein
the operations further comprise:

generating a graphical presentation of the ranking of the
developer relative to the one or more other developers;
and 5

providing the graphical presentation to a user device.

25. A computer-implemented method comprising:

obtaining data representing a plurality of developer actions
for a developer, wherein each developer action is clas-
sified as being either a violation introduction attributed 10
to the developer, a violation removal attributed to the
developer, or a unit of churn attributed to the developer;

obtaining a net violation baseline for a code base, wherein
the net violation baseline represents a measure of viola-
tion introductions compared to violation removals by a 15
typical high-productivity developer of the code base;

obtaining a developer action baseline for the code base, the
developer action baseline representing a number of
developer actions for the typical high-productivity
developer of the code base;

18

computing a net violation value for the developer from the
data, the net violation value representing a measure of
violation introductions attributed to the developer com-
pared to violation removals attributed to the developer;

computing a developer action value for the developer from
the data, the developer action value representing a total
number of developer actions of the developer;

computing a score including comparing the sum of the net
violation value and the net violation baseline to the sum
of the developer action value and the developer action
baseline;

ranking the developer relative to one or more other devel-
opers according to the computed score;

determining that the developer has a rank that satisfies a
threshold relative to other developers in a team of devel-
opers; and

generating a notification to a team leader of the team of
developers.

